Getting The Most From Your Imaging Equipment

John Smith Advanced Imaging Conference October 28, 2012

Key Factors

- Optical Alignment
- Image Sampling and Seeing
- Maximize Signal-To-Noise Ratio
- Focusing
- Guiding & Dithering
- Reliable Hardware Assembly

Optical Alignment

Collimation

- As precise as possible
- Look at the image
- Stable Optical Path
 - Secure Threaded Connections
 - Minimize Tilt
 - Eliminate Draw Tube Sag

Image Sampling & Seeing

- Seeing is defined as the point spread function of a point source, as seen through the atmosphere.
- FWHM of a short exposure, measured in arc-sec,
- For high resolution imaging, sample seeing by 3 - 3.5
- 2 arc-sec. seeing = .58 .67 arc-sec./pixel
- arc-sec./pixel = <u>206 x Pixel Size (micron)</u> Focal Length (mm)

Rough Seeing Test Maxim & FocusMax

Some Noise about Noise

- Incoming light is fixed but faint we count photons this is our "Signal"
- For discussion purposes, signal is fixed
- Noise is what we can mitigate to some extent
- Signal-to-Noise Ratio is simply incoming light divided by all noise sources
- Noise sources combine like Pythagorean's theorem: Square root of the sum of the squares
- Primary sources of noise:
 - Camera read noise
 - Sky glow noise
 - Dark signal noise
 - Noise from the signal itself!

Typical Noise Calculation

- Camera Read Noise: 12e
- Sky glow signal for a 10 min. exposure through a clear filter: 1440e
 Sky glow noise: 38e
- Dark signal noise (9 dark frames combined): 3e
- Total Noise = SQRT $(12^2 + 38^2 + 3^2)$
- Total Noise = SQRT (144 + 1440 + 9) = 40e (broadband)
- Total Noise = SQRT(144 + 100 + 9) = 16e (narrowband, little sky glow)

Note: Noise is measured in electrons (e). Multiply ADU by Gain (e/ADU) to get e.

What Can We Do?

- Ideally,
 - Use sensors with lowest possible read noise
 - Cool the sensor to reduce dark signal and its attendant noise
 - Go to a dark site to reduce sky glow
 - Get the most signal possible
- Practically,
 - Get the quietest camera we can afford
 - Cool the sensor as much as necessary
 - Bury the read noise in the sky glow noise
 - Multiple, <u>sufficiently long</u> sub-exposures

Sub-Exposure Duration

Broadband - Sky Noise Dominant

Bury read noise in sky noise when possible

- Sky noise = square root of sky glow
- Sky glow = 10 x read noise squared for 5% read noise contribution
- Expose so that sky glow ADU = 10 x (read noise)² / Gain
- Narrowband Read Noise Dominant
 - Negligible sky glow
- Noise reduces as square root of sub-exposures
- Binning may or may not give improved SNR. Verify!

Sample Calculation

Read Noise = 12e Gain = 1.4 e/ADU

Target Dark Subtracted Sky Glow:

10 x 12 x 12 / 1.4 = 1028 ADU (Subtract pedestal if present)

Focusing

- Know your Critical Focus Zone
 - Approx. $I/3^{1}$ of classical 2.2 x (Focal Ratio)²
 - Measure focus movement per count
 - Calculate CFZ in counts
- Repeatable Focuser
 - Heavy loads challenge draw tube focusers
- Focus Automation
 - FocusMax, CCCDSoft @Focus2, Maxim' s Focus

¹ Goldman, Magdal, In Perfect Focus, S&T, June 2010

² More precisely, classical CFZ = 4.88 x (Focal Ratio)² x (light wavelength)

Sample Calculation

Optec TCF-S3: Moves 2.54 micron/count

CFZ for an F/5 system @ 450 nm: 18 microns

CFZ = 18/2.54 or 7 counts

Guiding

- Minimize Guider Work
 - Use Periodic Error Correction
 - Careful Polar Alignment
 - Pointing Modeling
- Guide Exposure Duration
- Adaptive Optics
- Common Optical Path Best
 - Differential Flexure with Guide Scope

Dithering

- Move guide star coordinates between subexposures
- Reduce pattern noise, hot pixels when properly aligned with rejection algorithm
- Fewer dark frames needed due to uncorrelated noise³

³ Sub-Exposures and Dark Frames: http://www.hiddenloft.com/notes/DarkSubExp.pdf

Analyze				
	Read Noise Contribution	5.0	* *	%
	Minimum Sub-exposure Time	325		sec.
	Image Sensor KAF	16803	•	
	Planned Exposure Time	300	-	sec.
	Sensor Temperature	-40	*	°C
	Dark Noise Contribution	1.0	* *	%
	Number of Stacked Frames	9	*	
	Stare Olithered	7		>

Dither Patterns

Single Frame

Random

Unique

Aligned and Combined

- 12 Frames
- No Rejection
- Visible Pattern
- Varying Hot Pixel Levels

Combined With Data Rejection

- 12 Frames
- Sigma Reject
 - As few as 3-4 Frames
 - More Is Better
- Nearest Neighbor Combine
- Smooth Background
- Faint Details Preserved

Repeatable Imaging

- Automated Acquisition
- Repeatable Protocol
- Automatic Logging
- Backyard or Across the World
- Reliability Is Key

Wiring

Wiring

- Neatness counts
- Minimize connections between OTA and PC
- USB hub(s) and Power Distribution on OTA
- Strain Relieve All Connections
 - Cable Clamps, Ties
- Strain Relieve Through-The-Mount Wiring at Exit
- After wiring, check for interference and binding during the day
 - Move Rotator Through All Angles
 - Move Mount Through All Orientations

USB & Serial Converters

- Commercial hubs, serial-to-USB converters
 - Better temperature range, components
 - 12-volt powered hubs are ideal
- Office-class hubs can be a problem
 - Limited temperature range, unexplained hangs
- Locate hubs and serial-USB converters on OTA
- Single USB Cable from OTA to PC
 Don't use PC's front panel USB connection

Power Distribution

- Most Equipment is 12-volt Powered
- Use Common Power Supply
- Minimize Cables to OTA
 - I or 2 16 gauge pairs
 - Distribute Power on OTA
 - Barrier Strips, Crimp Terminals

An Electronics Panel

- Mounts to OTA via Dovetail Adapter
- All cables strain relieved
- Electronic assemblies redundantly mounted
- Designed for single power per system
- Supports 2 systems on OTA

Edgeport/4 Foam tape and cable ties

Power Barrier Strips Crimp Terminals Cable Clamps

Digi Electronics 12 volt, 7 port hub

A Serious System

- 20" RC and FSQ on one mount
- Electronics side mounted
- Single power supply
- Remote system switching

I2 volt hub USB Power Controller Power Distribution

225 lb. (!)

2 RFCP Edgeport/4

Backyard Widefield

- FSQ-106/U16M/AFW50-7S, ST-i, MMOAG, TAKometer, RoboFocus, FlipFlat, MX mount
- I 6 lb. imaging train requires special coupler - no slip clutch.
- 4° x 4° FOV
- Electronics on top of FSQ
- Through-the-mount power and signal wiring sufficient.

Imaging Trains

- Short USB Cables
- Strain Relieve all especially delicate connectors
- Power Distribution on Filter Wheel
- Hub on Filter Wheel
- Single power and USB cable from Imaging Train

Resources

- Digi Electronics USB hubs:301-1010-44 (4-port) and 301-1010-74 (7-port)
- Digi Electronics 4-port serial-USB Converter: Edgeport/4
- Pyramid Power Supplies
- OnTrak ADU200 USB Relay I/O Interface (custom software required)
- Short USB cables: <u>www.cyberguys.com</u> Ziotek
- Molded power cables: <u>www.digikey.com</u> CP-2187-ND (2.1/5.5 mm), CP-2186-ND (2.5/5.5 mm)
- DC Power wire: <u>www.powerwerx.com</u> 16 gauge minimum
- Cable ties and cable clamps from Home Depot
- System evaluation software: <u>www.ccdware.com</u> : PEMPro, CCDInspector, CCDAutoPilot

Final Thoughts

- Understand what's behind the data
- Make your systems stable and repeatable
- Enjoy the complete process
- Have fun!