## CCDNavigator: Get the Most on Clear Nights





By Dr. Steve Walters CCDWare Author









Does This Happen to You?

After an hour carefully packing my gear



Driving 5 hours to my favorite dark site



Spending an hour setting up

Another hour drift aligning



At last all is ready!



But I have no clue what to image!

## Ad Hoc Session Planning



- Groundhog Day: Imaging objects you've observed visually
- The Haystack:
  Planetarium pokey

• Overdose: Tools meant for visual observers





"Post-it" Chaos:
Lists of objects
you've seen on the
Internet



Out-Of-Time:
Books with
pictures

## Improving your Results

- You Need:
  - A Complete Plan

     Interesting targets appropriate for your system, exact positioning (RA, Dec, Angle) for composition and guiding, start/stop times, LRGBH sequences, binning and exposures, guidestar selection and exposures
    - Automation

       Flats, darks, bias frames, precision slews, focusing management, autoguider control, frame acquisition, weather monitoring, optimization tools, flexible, robust and reliable



## A Complete Plan

- When to have a session
- Interesting objects that are available the night of the session
- How *long* they are available for imaging
- How they will appear through your system
- Target order and exactly when to start and stop imaging each
  - An optimal LRGBH sequence plan for each target
  - What guidestar to use and position/angle for the telescope/camera
  - What autoguider exposure to use for each filter

# BETTER KNOW BEFORE YOUGO!

## Choose Interesting Targets







## When To Have A Session:

- Darkness and Imaging

From Sunset...



When does it get "dark"?





#### Some definitions:

- Sunset / Sunrise = Sun's upper edge is at the horizon
- Civil Twilight = Sun's center is 6 degrees below horizon
- Nautical Twilight = Sun's center is 12 degrees below horizon
- Astronomical Twilight = Sun's center is 18 degrees below horizon

Prefer to know the exact start and end of Astronomical Twilight, this varies by latitude but ~1.5 hrs after Sunset until 1.5 hrs before sunrise

#### When To Have A Session:

Mades of Netwerlodgrang aagtrout of micab darkession but equally ted of darkness - Rises after end of darkness

|        |    |    |    |    |    |    |    | inn |    |    |    |    |    |        |   |
|--------|----|----|----|----|----|----|----|-----|----|----|----|----|----|--------|---|
| Month  |    |    |    |    |    |    |    |     |    |    |    |    |    | Nights |   |
| Jan-10 | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16  | 17 | 18 | 19 | 20 | 21 | 10     | ٠ |
| Feb-10 | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15  | 16 | 17 | 18 | 19 | 20 | 9      |   |
| Mar-10 | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16  | 17 | 18 | 19 | 20 | 21 | 9      |   |
| Apr-10 | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15  | 16 | 17 | 18 | 19 | 20 | 9      |   |
| May-10 | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15  | 16 | 17 | 18 | 19 | 20 | 9      |   |
| Jun-10 | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13  | 14 | 15 | 16 | 17 | 18 | 9      |   |
| Jul-10 | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12  | 13 | 14 | 15 | 16 | 17 | 10     |   |
| Aug-10 | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11  | 12 | 13 | 14 | 15 | 16 | 10     |   |
| Sep-10 | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9   | 10 | 11 | 12 | 13 | 14 | 10     |   |
| Oct-10 | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8   | 9  | 10 | 11 | 12 | 13 | 10     |   |
| Nov-10 | 30 | 1  | 2  | 3  | 4  | 5  | 6  | 7   | 8  | 9  | 10 | 11 | 12 | 9      |   |
|        |    |    |    |    |    |    |    |     |    |    |    |    |    |        |   |

Dates of total darkness are not centered on New Moon!

## Target Availability

#### Availability depends on:

- Session Date
- Beginning and ending of darkness
- Minimum elevation angle crossing times
- Example: On 4/14/2010, darkness lasts from 9:32 pm until 4:48 am, M95 rises at 3:31 pm, ascends to 30 degrees at 6:05 pm, transits at 10:23 pm, descends to 30 degrees at 2:41 am, sets at 5:02 am.
- Available for 5 hr 8 min from 9:32 pm until 2:41 am

Our plan should be driven by target availability

Planetarium programs give rise, set & transit times but you need elevation crossing times to calculate imaging availability

## Target Order

#### Based on availability



 The target(s) with the earliest starting availability should be imaged first



• If two or more targets have the same starting availability, the one(s) with the earliest ending availability should be imaged first



• If two or more targets have the same starting and ending availability, the one(s) with the earliest transit should be imaged first

## Atmospherics

How much atmosphere is in our optical path? So what?



#### Greater Air Mass:

- Degraded resolution
- Greater color extinction

| A * 3 #    | 1                                     |
|------------|---------------------------------------|
| Air Mass = | $\sin(el) + 0.025 e^{-11 \sin{(el)}}$ |
|            | $SIII(e1) \pm 0.025 e$                |

- Choose a Minimum Elevation Angle
- Elevation Priority (high to low) is LBGR
  - > Maximizes L resolution
  - Minimizes color extinction
- Determines start time and frame order

| Elevation | Air Mass | Seeing | Red<br>Extinction | Green<br>Extinction | Blue<br>Extinction |
|-----------|----------|--------|-------------------|---------------------|--------------------|
| 90        | 1.00     | 2.00   | 0.0%              | 0.0%                | 0.0%               |
| 85        | 1.00     | . 2.01 | 0.0%              | 0.1%                | 0.1%               |
| 80        | 1.02     | 2.02   | 0.1%              | 0.2%                | 0.3%               |
| 75        | 1.04     | 2.05   | 0.3%              | 0.6%                | 0.8%               |
| 70        | 1.06     | 2.09   | 0.5%              | 1.0%                | 1.4%               |
| 65        | 1.10     | 2.15   | 0.9%              | 1.7%                | 2.4%               |
| 60        | 1.15     | 2.23   | 1.3%              | 2.5%                | 3.5%               |
| 55        | 1.22     | 2.33   | 1.8%              | 3.6%                | 5.0%               |
| 50        | 1.31     | 2.47   | 2.5%              | 5.0%                | 7.5%               |
| 45        | 1.41     | 2.67   | 3.4%              | 6.8%                | 9.7%               |
| 40        | 1.56     | 2.94   | 4.6%              | 9.2%                | 13.2%              |
| 35        | 1.74     | 3.35   | 6.3%              | 12.5%               | 18.0%              |
| 30        | 2.00     | 4.00   | 8.5%              | 17.2%               | 24.9%              |
| 25        | 2.36     | 5.15   | 11.8%             | 24.2%               | 35.6%              |
| 20        | 2.92     | 7.56   | 17.0%             | 35.6%               | 53.5%              |
| 15        | 3.84     | 14.34  | 26.3%             | 57.4%               | 89.2%              |
| 10        | 5.64     | 49.82  |                   |                     |                    |
| 5         | 10.34    | -      |                   |                     |                    |
| 0         | 40.00    | _      |                   |                     |                    |

## LRGB Acquisition

CCDNavigator provides two methods:



- "Staircase" sequencing
  - Maximizes L resolution, minimizes B extinction
  - Centered on transit time of target

```
BBB LLLLLLLLL BBB G G Transit
```

- "Shuffle" Sequencing
  - Cycles through LRGB filters
  - Ensures getting some data

(LRGB)(LRGB)(LRGB)

(LLLRGB)(LLLRGB)(LLLRGB)



## Autoguider Exposure



Two reference values specify a guiding "Window". Any point inside the parallelogram provides guidestar SNR / ADU and guiding comparable to the references

Three guider exposure "Strategies"

- Brown is "Shortest" exposure
- Orange is "Longest" exposure
- Gray is "Medium" exposure

Each filter managed separately for self guided cameras

Mag L R G B

| Mag  |             |      | G    |      |
|------|-------------|------|------|------|
| 4.0  | 0.1<br>15.0 | 0.3  | 0.3  | 0.5  |
| 12.0 | 15.0        | 20.0 | 20.0 | 25.0 |





## Site Administration









## CCDNavigator Demo





www.ccdware.com 15% off during NEAIC